Network Connection Games

Network Games (NG)

- NG model the various ways in which selfish users (i.e., players) strategically interact in using a (either communication, computer, social, etc.) network (modelled as a graph)
- The Internet routing game is a particular type of network congestion game
- Other examples of NG: social network games, graphical games, network connection games, etc.
- Notice that each of these games is actually a class of games, where each element of the class is specified by the actual input graph, and it is called an instance of the game (i.e, it is a specific game)

Network Connection Games (NCG)

- NCG are NG that aim to capture two competing issues for players when using a network for communication purposes:
- to minimize the afforded usage cost
- to be provided with a high quality of service
- Two big categories of NCG:
- Network Design Games (a.k.a. Global Connection Games): Users autonomously design a communication subnetwork embedded in an already existing network with the selfish goal of sharing costs in using it for a point-to-point communication
- Network Creation Games (a.k.a. Local Connection Games): Users autonomously form ex-novo a network that connects them for reciprocal communication (e.g., downloading files in P2P networks, exchanging messages in social networks, etc.)

Introduction

- Given a weighted graph G, a Global Connection Game (GCG) is a game that models the selfish design of a communication subnetwork of G, i.e., a set of point-to-point communication paths, where each path is associated with a player, and the selfish goal of each player is to share the costs for a joint use with other players of the edges on its selected path
- In other words, players:
- pay for the links they personally use
- benefit from sharing links with other players in the selected subnetwork

The formal definition of a GCG

- It is given a directed weighted graph $G=(V, E, c) ; c_{e}$ will denote the non-negative real weigth of $e \in E$
- k players; each player is associated with a commodity (s_{i},
t_{i}), with $s_{i}, t_{i} \in V$, and the strategy for a player i is to select a path P_{i} in G from s_{i} to t_{i}
- Let k_{e} denote the load of edge e, i.e., the number of players using e; the cost of P_{i} for player i in a strategy profile $S=\left(P_{1}, \ldots, P_{k}\right)$ is shared with all the other players using (part of) it, namely:

$$
\operatorname{cost}_{i}(S)=\sum_{e \in P_{i}} c_{e} / k_{e}
$$

this cost-sharing scheme is called fair or Shapley cost-sharing mechanism

The formal definition of a GCG (2)

- Given a strategy vector S, the designed network $N(S)$ is given by the union of all paths P_{i}
- Then, the social-choice function is the utilitarian social cost, namely the total cost of the designed network:

$$
C(S)=\sum_{i} \operatorname{cost}_{i}(S)=\sum_{i} \sum_{e \in P_{i}} c_{e} / k_{e}=\sum_{e \in N(S)} c_{e}
$$

- Notice that each player has a favorable effect on the cost paid by other players (so-called cross monotonicity), as opposed to the congestion model of selfish routing

Open questions

- What is a stable network? We use NE as the solution concept, and we will seek for the existence of NE
- How to evaluate the overall quality of a stable network? We compare its cost to that of an optimal (in general, unstable) network, and we will try to estimate a bound on the efficiency loss resulting from selfishness
- Notice that the problem of finding an optimal network is a classic optimization problem (i.e., the network design problem), which is known to be NP-hard even if G is unweighted

Lower bounding the loss of efficiency

- Remind that a network is optimal or socially efficient if it minimizes the social cost (i.e., it minimizes the social-choice function)
- We know that the PoA is useful to estimate the loss of efficiency we may have in the worst case, as given by the ratio between the cost of a worst stable network and the cost of an optimal network
- But what about the ratio between the cost of a best stable network and the cost of an optimal network?

The price of stability (PoS)

Definition (Schulz \& Moses, 2003): Given a (single-instance) game G and a social-choice function C (which depends on the payoff of all the players), let S be the set of all NE of G. If the payoff represents a cost (resp., a utility) for a player, let OPT be the outcome of G minimizing (resp., maximizing) C. Then, the Price of Stability (PoS) of G w.r.t. C is:

$$
\operatorname{PoS}_{G}(C)=\inf _{s \in S} \frac{C(s)}{C(\mathrm{OPT})}\left(\text { resp., sup } \frac{C(s)}{C(\mathrm{OPT})}\right)
$$

Remark: If G is a class of games (as for GCG), then its PoS is the maximum/minimum among the PoS of all the instances of G, depending on whether the payoff for a player is either a cost or a utility.

Some remarks

- PoA and PoS are (for positive s.c.f. C)
- ≥ 1 for minimization (i.e., payoffs are costs) games
- ≤ 1 for maximization (i.e., payoffs are utilities) games
- PoA and PoS are small when they are close to 1
- PoS is at least as close to 1 as PoA is
- In a game with a unique NE, PoA=PoS, while in a game with no any NE, they are not defined
- Why studying the PoS?
- sometimes a nontrivial bound is possible only for PoS
- PoS quantifies a lower bound to the efficiency loss resulting from selfishness

An example

An example

optimal network has cost 12

$$
\begin{aligned}
& \operatorname{cost}_{1}=7 \\
& \operatorname{cost}_{2}=5
\end{aligned}
$$

is it stable?

An example

...no!, player 1 can decrease its cos \dagger

$$
\begin{aligned}
& \cos _{1}=5 \\
& \cos t_{2}=8
\end{aligned}
$$

is it stable? ...yes, and has cost 13!

$$
\Rightarrow P \circ A \geq 13 / 12, \operatorname{PoS} \leq 13 / 12
$$

An example

...a best possible NE:

$$
\begin{aligned}
& \operatorname{cost}_{1}=5 \\
& \operatorname{cost}_{2}=7.5
\end{aligned}
$$

the social cost is $12.5 \Rightarrow \mathrm{PoS}=12.5 / 12$
Homework: find a worst possible NE

Theorem 1

Every instance of the GCG has a pure Nash equilibrium, and best/better response dynamics (i.e., that in which each player at each step selects a best/better available strategy) always converges.

Theorem 2

The PoA of a GCG with k players is at most k (i.e., every instance of the game has PoA $\leq k$), and this is tight (i.e., we can exhibit an instance of the game whose PoA is k).

Theorem 3

The PoS of a GCG with k players is at most H_{k}, the k-th harmonic number (i.e., every instance of the game has $\operatorname{PoS} \leq H_{k}$), and this is tight (i.e., we can exhibit an instance of the game whose PoS is H_{k})

The potential function method

For any finite game, an exact potential function Φ is a function that maps every strategy vector S to some (finite) real value and satisfies the following condition:
$\forall S=\left(s_{1}, \ldots, s_{i}, \ldots, s_{k}\right)$, let $s_{i}^{\prime} \neq s_{i}$, and let $S^{\prime}=\left(s_{1}, \ldots, s_{i}^{\prime}, \ldots, s_{k}\right)$, then

$$
\Phi(S)-\Phi\left(S^{\prime}\right)=\operatorname{cost}_{i}(S)-\cos t_{i}\left(S^{\prime}\right) .
$$

A (finite) game that does possess an exact potential function is called potential game

Lemma 1

Every potential game has at least one pure Nash equilibrium, namely the strategy vector \hat{S} that minimizes (resp., maximizes) Φ, assuming players' payoffs are costs (resp., utilities).

Proof (minimization): Observe that Φ is bounded. Then, starting from $\hat{S}=\left(\hat{s}_{1}, \ldots, \hat{s}_{i}, \ldots, \hat{s}_{k}\right)$, consider any move by a player i that results in a new strategy vector $\mathrm{S}=\left(\hat{S}_{-i}, S_{\mathrm{i}}\right)=$ $\left(\hat{s}_{1}, \ldots, \hat{\mathrm{i}}_{\mathrm{i}-1}, \mathrm{~s}_{i}, \ldots, \hat{\mathrm{~s}}_{\mathrm{k}}\right)$. Since $\Phi(\hat{S})$ is minimum, we have:

$$
\Phi \underbrace{\Phi(\hat{S})-\Phi(S)}=\operatorname{cost}_{i}(\hat{S})-\operatorname{cost}_{i}(\mathrm{~S})
$$

$$
\leq 0
$$

$\operatorname{cost}_{i}(\hat{S}) \leq \operatorname{cost}_{i}(S)$
player i canno \dagger decrease its cost, thus \hat{S} is a $N E$.

Convergence in potential games

Lemma 2

In any finite potential game, best/better response dynamics always converges to a Nash equilibrium

Proof: By definition, improving moves for players decrease the value of the potential function, which is bounded. Thus, sooner or later the system will arrive to a state with the property that $\Phi(S)$ cannot be decreased by changing any single component of S, i.e., a NE.
(2) However, it may be the case that converging to a NE takes an exponential (in the number of players) number of steps!

...turning our attention to the global connection game...

Let Ψ be the following function mapping any strategy vector S to a real value [Rosenthal 1973]:

$$
\Psi(S)=\Sigma_{e \in N(S)} \Psi_{e}(S)
$$

where (recall that k_{e} is the number of players using e in S)

$$
\Psi_{e}(S)=c_{e} \cdot H_{k_{e}}=c_{e} \cdot\left(1+1 / 2+\ldots+1 / k_{e}\right) .
$$

Lemma 3 (Ψ is a potential function)

Let $S=\left(P_{1}, \ldots, P_{k}\right)$, let P_{i}^{\prime} be an alternative path for some player i , defining a new strategy vector $S^{\prime}=\left(S_{-i}, P_{i}^{\prime}\right)$. Then:

$$
\Psi(S)-\Psi\left(S^{\prime}\right)=\operatorname{cost}_{i}(S)-\operatorname{cost}_{i}\left(S^{\prime}\right) .
$$

Proof:

When player i switches from P_{i} to P_{i}^{\prime}, some edges of $N(S)$ increase their load by 1 , some others decrease it by 1 , and the remaining do not change it. Then, it suffices to notice that:

- If an edge e exits from the solution, its load decreases by 1 , and so its contribution to the potential function decreases by $\mathrm{c}_{e} / \mathrm{k}_{e}$
- If an edge e enters into the solution, its load increases by 1 , and so its contribution to the potential function increases by $c_{e} /\left(\mathrm{k}_{e}+1\right)$

$$
\begin{aligned}
& \Rightarrow \Psi(S)-\Psi\left(S^{\prime}\right)=\Psi(S)-\Psi\left(S-P_{i}+P_{i}^{\prime}\right)=\Psi\left(P_{i}\right)-\Psi\left(P_{i}^{\prime}\right)= \\
& =\Sigma_{e \in P_{i}} c_{e} / k_{e}-\Sigma_{e \in P_{i}^{\prime}} c_{e} /\left(k_{e}+1\right)=\operatorname{cost}_{i}(S)-\operatorname{cost}_{i}\left(S^{\prime}\right)
\end{aligned}
$$

Existence of a NE Theorem 1

Every instance of the GCG has a pure Nash equilibrium, and best/better response dynamics always converges.

Proof: From Lemma 3, a GCG is a potential game, and from Lemma 1 and 2 best/better response dynamics converges to a pure NE.
(). It can be shown that finding a best response for a player is polynomial (it suffices to find a shortest path in G where each edge e is weighted as $\left.c_{e} /\left(k_{e}+1\right)\right)$
(2. Instead, it can be shown that finding a NE of cost at most C (and so, finding a best/worst NE) is NP-hard!

Price of Anarchy: a lower bound

optimal network has cost 1
best NE: all players use the lower edge
$\square \quad \mathrm{PoS}$ is 1
worst NE: all players use the upper edge

Upper-bounding the PoA

Theorem 2

The price of anarchy in the global connection game with k players is at most k (and so, from the previous lower bound, this is tight).
Proof: Let OPT=($\mathrm{P}_{1}^{*}, \ldots, \mathrm{P}_{\mathrm{k}}^{*}$) denote the optimal set of paths (i.e., a set of paths minimizing C), and let k_{e}^{*} be the load of an edge e in OPT. Let Π_{i} be a shortest path in $G=(V, E, c)$ between s_{i} and t_{i} w.r.t. c, and let $\ell\left(\Pi_{i}\right)=$ $\Sigma_{e \in \Pi_{i}} c_{e}$ be the length of such a path. Finally, let S be any NE. Observe that $\operatorname{cost}_{i}(S) \leq \ell\left(\Pi_{i}\right)$ (otherwise the player i would change to Π_{i}). Then:

$$
\begin{aligned}
& C(S)=\sum_{i=1}^{k} \operatorname{cost}_{i}(S) \leq \sum_{i=1}^{k} \ell\left(\Pi_{i}\right) \leq \sum_{i=1}^{k} \ell\left(P_{i}^{*}\right)= \\
& \sum_{i=1}^{k} \sum_{e \in P_{i} i^{*}} c_{e} \leq \sum_{i=1}^{k} \sum_{e \in P_{i}^{*}} k \cdot c_{e} / k_{e}^{*}=\sum_{i=1}^{k} k \cdot \operatorname{cost}_{i}(O P T)=k \cdot C(O P T) .
\end{aligned}
$$

PoS for GCG: a lower bound

$\varepsilon>0$: small value

PoS for GCG: a lower bound

 $\varepsilon>0$: small value

The optimal solution has a cost of $1+\varepsilon$
is it stable?

PoS for GCG: a lower bound

...no! player k can decrease its cost...
is it stable?

PoS for GCG: a lower bound

...no! player k-1 can decrease its cost...
is it stable?

PoS for GCG: a lower bound

$\varepsilon>0$: small value

The only stable network
social cost: $C(S)=\sum_{j=1}^{k} 1 / j=H_{k} \leq \ln k+1 \quad k-t h$ harmonic number

Lemma 4

Suppose that we have a potential game with potential function Φ, and assume that for any outcome S we have

$$
C(S) / A \leq \Phi(S) \leq B C(S)
$$

for some $A, B>0$. Then the price of stability is at most $A B$.
Proof:
Let \hat{S} be the strategy vector minimizing Φ (i.e., \hat{S} is a $N E$, from Lemma 1). Let S^{*} be the strategy vector minimizing the social cost
we have:

$$
\begin{aligned}
& C(\hat{S}) / A \leq \Phi(\hat{S}) \leq \Phi\left(S^{\star}\right) \leq B C\left(S^{\star}\right) \\
\Rightarrow & P o S \leq C(\hat{S}) / C\left(S^{\star}\right) \leq A \cdot B .
\end{aligned}
$$

Lemma 5 (Bounding Ψ)

For any strategy vector S in the GCG, we have:

$$
C(S) \leq \Psi(S) \leq H_{k} C(S) .
$$

Proof: Indeed:

$$
\begin{aligned}
& \Psi(S)=\Sigma_{e \in N(S)} \Psi_{e}(S)=\Sigma_{e \in N(S)} c_{e} \cdot H_{k e} \\
& \Rightarrow \Psi(S) \geq C(S)=\Sigma_{e \in N(S)} c_{e} \\
& \text { and } \Psi(S) \leq H_{k} \cdot C(S)=\Sigma_{e \in N(S)} c_{e} \cdot H_{k} .
\end{aligned}
$$

Upper-bounding the PoS

Theorem 3

The price of stability in the global connection game with k players is at most H_{k}, the k-th harmonic number (and so, from the previous lower bound, this is tight).

Proof: From Lemma 3, a GCG is a potential game, and from Lemma 5 and Lemma 4 (with $A=1$ and $B=H_{k}$), its PoS is at most H_{k}.

